Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2305673

ABSTRACT

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Aged , Humans , Middle Aged , Young Adult , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Pandemics
2.
Cell Host Microbe ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2240051

ABSTRACT

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.

3.
Lancet Infect Dis ; 22(8): 1210-1220, 2022 08.
Article in English | MEDLINE | ID: covidwho-1972391

ABSTRACT

BACKGROUND: Western (WEEV), eastern (EEEV), and Venezuelan (VEEV) equine encephalitis viruses are mosquito-borne pathogens classified as potential biological warfare agents for which there are currently no approved human vaccines or therapies. We aimed to evaluate the safety, tolerability, and immunogenicity of an investigational trivalent virus-like particle (VLP) vaccine, western, eastern, and Venezuelan equine encephalitis (WEVEE) VLP, composed of WEEV, EEEV, and VEEV VLPs. METHODS: The WEVEE VLP vaccine was evaluated in a phase 1, randomised, open-label, dose-escalation trial at the Hope Clinic of the Emory Vaccine Center at Emory University, Atlanta, GA, USA. Eligible participants were healthy adults aged 18-50 years with no previous vaccination history with an investigational alphavirus vaccine. Participants were assigned to a dose group of 6 µg, 30 µg, or 60 µg vaccine product and were randomly assigned (1:1) to receive the WEVEE VLP vaccine with or without aluminium hydroxide suspension (alum) adjuvant by intramuscular injection at study day 0 and at week 8. The primary outcomes were the safety and tolerability of the vaccine (assessed in all participants who received at least one administration of study product) and the secondary outcome was immune response measured as neutralising titres by plaque reduction neutralisation test (PRNT) 4 weeks after the second vaccination. This trial is registered at ClinicalTrials.gov, NCT03879603. FINDINGS: Between April 2, 2019, and June 13, 2019, 30 trial participants were enrolled (mean age 32 years, range 21-48; 16 [53%] female participants and 14 [47%] male participants). Six groups of five participants each received 6 µg, 30 µg, or 60 µg vaccine doses with or without adjuvant, and all 30 participants completed study follow-up. Vaccinations were safe and well tolerated. The most frequently reported symptoms were mild injection-site pain and tenderness (22 [73%] of 30) and malaise (15 [50%] of 30). Dose-dependent differences in the frequency of pain and tenderness were found between the 6 µg, 30 µg, and 60 µg groups (p=0·0217). No significant differences were observed between dosing groups for any other reactogenicity symptom. Two adverse events (mild elevated blood pressure and moderate asymptomatic neutropenia) were assessed as possibly related to the study product in one trial participant (60 µg dose with alum); both resolved without clinical sequelae. 4 weeks after second vaccine administration, neutralising antibodies were induced in all study groups with the highest response seen against all three vaccine antigens in the 30 µg plus alum group (PRNT80 geometric mean titre for EEEV 60·8, 95% CI 29·9-124·0; for VEEV 111·5, 49·8-249·8; and for WEEV 187·9, 90·0-392·2). Finally, 4 weeks after second vaccine administration, for all doses, the majority of trial participants developed an immune response to all three vaccine components (24 [83%] of 29 for EEEV; 26 [90%] of 29 for VEEV; 27 [93%] of 29 for WEEV; and 22 [76%] of 29 for EEEV, VEEV, and WEEV combined). INTERPRETATION: The favourable safety profile and neutralising antibody responses, along with pressing public health need, support further evaluation of the WEVEE VLP vaccine in advanced-phase clinical trials. FUNDING: The Vaccine Research Center of the National Institute of Allergy and Infectious Diseases, National Institutes of Health funded the clinical trial. The US Department of Defense contributed funding for manufacturing of the study product.


Subject(s)
Alphavirus , Encephalitis Virus, Venezuelan Equine , Vaccines, Virus-Like Particle , Adjuvants, Immunologic , Adult , Animals , Antibodies, Neutralizing , Antibodies, Viral , Double-Blind Method , Female , Horses , Humans , Immunogenicity, Vaccine , Male , Middle Aged , Pain , Young Adult
4.
Science ; 377(6607): 728-735, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1968212

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Peptides/immunology , Protein Conformation, alpha-Helical , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
5.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1937225

ABSTRACT

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
6.
PLoS One ; 17(5): e0268767, 2022.
Article in English | MEDLINE | ID: covidwho-1862275

ABSTRACT

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Biotin , COVID-19/therapy , Humans , Immunization, Passive , Molecular Probes , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
7.
Science ; 376(6591): eabn8897, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-1759268

ABSTRACT

The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cryoelectron Microscopy , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
8.
J Infect Dis ; 225(5): 856-861, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1666006

ABSTRACT

We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.


Subject(s)
HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes , HIV-1/genetics , Humans , Viremia/drug therapy , Virus Latency , Vorinostat/therapeutic use
10.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1588150

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

11.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750489

ABSTRACT

SARS-CoV-2 has emerged as a global pathogen, sparking urgent vaccine development efforts with the trimeric spike. However, the inability of antibodies like CR3022, which binds a cryptic spike epitope with nanomolar affinity, to neutralize virus, suggests a spike-based means of neutralization escape. Here, we show the SARS-CoV-2 spike to have 10% the unfolding enthalpy of a globular protein at physiological pH, where it is recognized by antibodies like CR3022, and up to 10-times more unfolding enthalpy at endosomal pH, where it sheds such antibodies, suggesting that the spike evades potentially neutralizing antibody through a pH-dependent mechanism of conformational masking. To understand the compatibility of this mechanism with ACE2-receptor interactions, we carried out binding measurements and determined cryo-EM structures of the spike recognizing up to three ACE2 molecules at both physiological and endosomal pH. In the absence of ACE2, cryo-EM analyses indicated lower pH to reduce conformational heterogeneity. Single-receptor binding domain (RBD)-up conformations dominated at pH 5.5, resolving into a locked all-down conformation at lower pH through lowering of RBD and refolding of a pH-dependent switch. Notably, the emerging Asp614Gly strain partially destabilizes the switch that locks RBD down, thereby enhancing functional interactions with ACE2 while reducing evasion by conformational masking.

12.
N Engl J Med ; 385(19): 1774-1785, 2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1434206

ABSTRACT

BACKGROUND: At interim analysis in a phase 3, observer-blinded, placebo-controlled clinical trial, the mRNA-1273 vaccine showed 94.1% efficacy in preventing coronavirus disease 2019 (Covid-19). After emergency use of the vaccine was authorized, the protocol was amended to include an open-label phase. Final analyses of efficacy and safety data from the blinded phase of the trial are reported. METHODS: We enrolled volunteers who were at high risk for Covid-19 or its complications; participants were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 µg) or placebo, 28 days apart, at 99 centers across the United States. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data cutoff date was March 26, 2021. RESULTS: The trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase. Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% confidence interval [CI], 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8). The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group. Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified. CONCLUSIONS: The mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Follow-Up Studies , Humans , Immunization, Secondary , Incidence , Intention to Treat Analysis , Male , Middle Aged , Patient Acuity , Single-Blind Method , Treatment Outcome , Young Adult
13.
Sci Transl Med ; 13(616): eabj5413, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1406601

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells collected from patients with coronavirus disease 2019. The three most potent antibodies targeted distinct regions of the receptor binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin-converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484, and N501. We designed bispecific antibodies by combining nonoverlapping specificities and identified five bispecific antibodies that inhibit SARS-CoV-2 infection at concentrations of less than 1 ng/ml. Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain­RBD specificities. One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a dose of 2.5 mg/kg. Two bispecific antibodies in our panel comparably neutralized the Alpha, Beta, Gamma, and Delta variants and wild-type virus. Furthermore, a bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Subject(s)
Antibodies, Bispecific , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Humans , SARS-CoV-2
14.
Sci Rep ; 10(1): 18149, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-1387454

ABSTRACT

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.


Subject(s)
Antigens/immunology , Betacoronavirus/metabolism , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antigens/genetics , Antigens/metabolism , Aquifex , Bacteria/enzymology , Bacterial Proteins/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections , Ferritins/genetics , Helicobacter pylori/metabolism , Humans , Mice , Multienzyme Complexes/genetics , Neutralization Tests , Pandemics , Pneumonia, Viral , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Properties
15.
Cell Host Microbe ; 28(6): 867-879.e5, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1385264

ABSTRACT

The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the human ACE2 receptor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how ACE2 binding and low pH affect spike conformation, we determined cryo-electron microscopy structures-at serological and endosomal pH-delineating spike recognition of up to three ACE2 molecules. RBDs freely adopted "up" conformations required for ACE2 interaction, primarily through RBD movement combined with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry; we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up binding antibody.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Pandemics , Spike Glycoprotein, Coronavirus/ultrastructure , Amino Acid Sequence/genetics , Angiotensin-Converting Enzyme 2/ultrastructure , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Endosomes/ultrastructure , Humans , Hydrogen-Ion Concentration , Protein Binding , Protein Domains , Receptors, Virus/genetics , Receptors, Virus/ultrastructure , SARS-CoV-2/genetics , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/genetics
17.
J Biol Chem ; 297(4): 101127, 2021 10.
Article in English | MEDLINE | ID: covidwho-1373108

ABSTRACT

The SARS-CoV-2 spike is the primary target of virus-neutralizing antibodies and critical to the development of effective vaccines against COVID-19. Here, we demonstrate that the prefusion-stabilized two-proline "S2P" spike-widely employed for laboratory work and clinical studies-unfolds when stored at 4 °C, physiological pH, as observed by electron microscopy (EM) and differential scanning calorimetry, but that its trimeric, native-like conformation can be reacquired by low pH treatment. When stored for approximately 1 week, this unfolding does not significantly alter antigenic characteristics; however, longer storage diminishes antibody binding, and month-old spike elicits virtually no neutralization in mice despite inducing high ELISA-binding titers. Cryo-EM structures reveal the folded fraction of spike to decrease with aging; however, its structure remains largely similar, although with varying mobility of the receptor-binding domain. Thus, the SARS-CoV-2 spike is susceptible to unfolding, which affects immunogenicity, highlighting the need to monitor its integrity.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , Calorimetry, Differential Scanning , Cryoelectron Microscopy , Female , Humans , Hydrogen-Ion Concentration , Mice , Mice, Inbred BALB C , Protein Structure, Tertiary , Protein Unfolding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
18.
N Engl J Med ; 385(9): 803-814, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1373469

ABSTRACT

BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Protozoan/blood , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Infusions, Intravenous/adverse effects , Injections, Subcutaneous/adverse effects , Middle Aged , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification
19.
Science ; 373(6561): 1372-1377, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1356908

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations may diminish vaccine-induced protective immune responses, particularly as antibody titers wane over time. Here, we assess the effect of SARS-CoV-2 variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) on binding, neutralizing, and angiotensin-converting enzyme 2 (ACE2)­competing antibodies elicited by the messenger RNA (mRNA) vaccine mRNA-1273 over 7 months. Cross-reactive neutralizing responses were rare after a single dose. At the peak of response to the second vaccine dose, all individuals had responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of the mRNA-1273 vaccine. Across all assays, B.1.351 had the lowest antibody recognition. These data complement ongoing studies to inform the potential need for additional boost vaccinations.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cross Reactions , Humans , Immune Evasion , Immunization, Secondary , Immunogenicity, Vaccine , Middle Aged , Time Factors , Young Adult
20.
Immunity ; 54(8): 1636-1651, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1336544

ABSTRACT

The development of effective vaccines to combat infectious diseases is a complex multi-year and multi-stakeholder process. To accelerate the development of vaccines for coronavirus disease 2019 (COVID-19), a novel pathogen emerging in late 2019 and spreading globally by early 2020, the United States government (USG) mounted an operation bridging public and private sector expertise and infrastructure. The success of the endeavor can be seen in the rapid advanced development of multiple vaccine candidates, with several demonstrating efficacy and now being administered around the globe. Here, we review the milestones enabling the USG-led effort, the methods utilized, and ensuing outcomes. We discuss the current status of COVID-19 vaccine development and provide a perspective for how partnership and preparedness can be better utilized in response to future public-health pandemic emergencies.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/prevention & control , Research , SARS-CoV-2/immunology , Bioengineering , Biotechnology , COVID-19 Vaccines/administration & dosage , Humans , Models, Molecular , Outcome Assessment, Health Care , Public Health Surveillance , Research/statistics & numerical data , Research/trends , United States/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccinology
SELECTION OF CITATIONS
SEARCH DETAIL